每日一句: Build your own dreams, or someone else will hire you to build theirs. 打造自己的梦想,否则你就会被雇用去打造别人的梦想。 跟读

汉语站

2017年7月22日 星期六

丁酉(鸡)年六月廿九

金牛座是在冬天夜晚出现于天上南侧的星座。金牛座的符号,象征牛的头部,其守护星为金星,守护神为爱与美的女

金牛座
金牛座
神-维纳斯。在猎户座西北方不远的,有一颗非常亮的0.86m星(在全天亮星中排第十三位),它就是金牛座α星。

金牛座 - T变星 [回目录]

金牛座
金牛座
一种不规则变星,光谱型为G~M型,典型星是金牛座T,是乔伊于1945年首先发现的。金牛座T型变星和弥漫星云密切成协,并成集团出现,常构成T星协主要成员。有人估计在太阳周围一千秒差距内约有12,000个金牛座T型变星,整个银河系内的总数达100万个。这类变星都具有非周期的不规则光变,或快速的光变迭加在长期的缓慢光变上。最大变幅为5个星等﹐一般为1~2个星等。近年来还发现在红外波段上也有光变。它们的光谱都是在一晚型光球上迭加一系列发射线。最强的发射线是巴耳末线和电离钙CaⅡ的H和K线。经常出现电离铁FeⅡ﹑电离钛TiⅡ﹑中性铁FeⅠ及中性钙CaⅠ等发射线和低激发金属原子谱线。在蓝紫区都有一重叠的连续发射光谱区。在个别情况下﹐这一连续发射特别强烈﹐致使光球吸收光谱全被淹没,在一些亮的金牛座T型星的高色散光谱中,大多数吸收谱线都被加宽。说明它们有较大的自转速度。有不少金牛座T型星具有天鹅座P型星光砖o也就是说,在强发射线轮廓偏短波一端出现吸收线,这说明它们向外抛射物质。质量损失率估计为每年10~10太阳质量。少数金牛座T型星有反天鹅座P型星光谱﹐说明有物质向内陷落的现象。某些金牛座T型星中有高达12%的偏振。金牛座T型星的锂丰度比太阳大气高出约2个数量级﹐并且有红外色余。现已测得金牛座T星的射电辐射。目前话闳衔金牛座T型星是一种正处在引力收缩阶段的主星序前恒星。

最先,美国天文学家乔伊(Joy)在1945年将11颗混杂在星云中具有发射谱线的变星被称为「金牛座T型变星」,到1962年已经发现了126颗比14.5星等亮的金牛座T型变星。这些变星通常笼罩在弥漫星云中,表面温度较低,大都为晚期光谱型。除少数外,光度变化不规则,光变规则从十分之几星等到几星等,常伴随著Hα发射谱线,也常有钙离子的H谱线与K谱线。由光谱分析,显示金牛座T型变星有物质流出的现象,喷发的速度由每秒225公里至425公里不等,而且随时间变化。

在H-R图中,金牛座T型变星分布在主序带的右上侧,位于Hayashi轨迹上,显示它们是非常年青的恒星,为进入

金牛座
金牛座
主序星之前的晚期光谱型恒星,属于前主序星(pre-main-sequencestars)。藉光谱中发射谱线的强弱,又分为强金牛座T型变星与弱金牛座T型变星两类,前者比后者活跃。典型的金牛座T型变星发出很强的恒星风,被认为是物质由周围盘面向中央吸积所致,这些物质是恒星形成过程中流下的残余物;相对的,弱金牛座T型变星就缺乏强烈的恒星风与吸积盘,可能是强金牛座T型变星演化的后期阶段,周遭环星盘扩散后的结果。

原则上,混杂许多年轻恒星的弥漫星云中,是最适合进行金牛座T型变星观测。但是实际上,这些恒星形成区都距离太阳很远,远在150秒差距(pc)以外,因此很难观测光度的细微变化。金牛座T型变星的光度呈现某种特性的变化,其中有许多为周期性的光度变化。这些周期性的光度变化被认为是恒星表面具有星斑随着自转的结果,这些星斑可以是冷的(像太阳黑子),也可以是热的(像太阳色球中的谱斑)。以太阳与其他活跃恒星(例如RSCVn型与BYDRa型)作为类比,分析金牛座T型变星光度曲线的型态、振幅与周期,可以估算出低温斑点所在的纬度、大小与形状,以及它们如何随时间改变。以金牛座V410星(V410Tau)为例,以六年五次的光度观测数据,导出自转周期为1.8710天,而且其光度变化的外貌与振幅,符合模型所预期的星斑大小、温度与分布的变化。由周主序星之前期的恒星自转周期是一个重要的参数,而且只能由光度观测推得,因此有必要对金牛座T型变星进行长期的光度观测。

有系统性的研究金牛座T型变星的自转,约有一百多颗金牛座T型变星的自转速度被测量过。由于自转速度小周每秒20公里,反映出大多数的金牛座T型变星质量小周1.25个太阳质量。在主序星之前的恒星中,观测结果显示自转速度随质量增加而加大,这可能是恒星形成过程的结果。

金牛座 - RV型变星 [回目录]

RVTaurivariablestars

脉动变星的一种,光变周期约20~150天,光谱型为F~M型(大多数为G型和K型)的超巨星(见恒星光谱分类)。光变幅多在2~3个星等,光变曲线呈双波状,周期相当固定,但主极小和副极小的深度不固定,并且常发生主极小和副极小的相互转变。大多数金牛座RV型变星的光谱中常出现氢的发射线和碳、甲川、氰基、氧化钛的吸收带。谱型随光变而有明显的变化(极大时谱型早,极小时谱型晚),颜色一般偏蓝。这类变星可能属于星族Ⅱ。根据平均星等有无变化分为两个次型。具有正常的平均亮度的金牛座RV型变星称为RVa,典型代表是武仙座AC。平均星等作周期性变化的称为RVb,典型代表是金牛座RV和天箭座R。

金牛座 - 昴星团 [回目录]

昴星团
Pleiades

赤经03:47.0(小时:分)
赤纬+24:07(度:分)
距离0.38(千光年)
视亮度1.6(星等)
视大小110.0(角分)

金牛座
金牛座
昴星团(Pleiades),最有名的星团之一,位于金牛座。在晴朗的夜空单用肉眼就可以看到它。梅西叶星表编号为M45,又常被称为是七姊妹星团,它是离我们最近也是最亮的几个疏散星团之一。昴星团总共含有超过3000颗的恒星,它的横宽大约13光年,距离128秒差距(417光年),真直径约4秒差距。

中国古代把其中的亮星列为昴宿。有关的传说和神话很多,也被称为“七姊妹星团”。一般肉眼能看到6颗星,眼力好的话能看到更多,因此它能用来检验你视力好坏或者天气晴朗情况。

其中最亮的6颗星自西向东的星名、光电目视星等和MK光谱分类依次是:

金牛座17(昴宿一),3.71,B6Ⅲ;
金牛座19(昴宿二),4.31,B6Ⅳ;
金牛座20(昴四),3.88,B7ⅢSn;
金牛座23(昴宿五),4.18,B6V;
金牛座η(昴宿六),2.87,B7Ⅲ;
金牛座27(昴宿七),3.64,B8Ⅲ。

这些星都在作快速自转。蓝巨星昴宿六表面有效温度约13,500K,总辐射光度约为太阳的2,200倍,半径约为太阳的8倍,但赤道自转一周所需时间还不到3天。昴宿七是轨道周期为好几年的分光双星。昴星团有百分之七的成员星是轨道周期小于100天的双星。著名气壳星金牛座28(即金牛座BU)就在昴星团内。在昴星团方向已经发现了460个以上的耀星。这个星团没有红巨星。照片上看到的昴星团亮星附近的星云叫作NGC1432,是由星际尘粒反射和散射星光形成的反射星云。这也许是昴星团恒星形成时剩下的星,但更可能是昴星团在运动中遇到的物质。

昴星团距离太阳400光年,因含有早B型星,从天文时间尺度来说正处在年少时期。质量为九个太阳的B型星,若

金牛座
金牛座
收缩到主星序,耗尽其核部的氢并开始膨胀到红巨星,照估计需历时2100万年左右。因此,这个值就应该是疏散星团的年龄。可是,唯有昴星团的颜色一光度图却又清楚地表明,仅含0.2太阳质量的那些恒星业已渡过了初始收缩阶段,基本上处于零龄主星序上.照最近恒星演化理论估计,质量为0.2太阳的恒星收缩到零龄主星序所需时间,大致为60000万年。那么,昴星团的年龄到底是多少呢?究竟是2100万年还是60000万年?

事实上,矛盾并不像看起来那样尖锐。赫尔比希认为,在形成大质量的恒星之前,先已由星云物质形成了小质量的恒星。如果晚型主序星首先形成,它们就会在早型星收缩到主星序的相同时间内到达零龄主星序,然后燃烧它们核部的氢,并开始向红巨星阶段膨胀。这一理论好像得到了观测的支持。关于小质量恒星形成较早的又一证据是金牛一御夫座暗星云,在这些星云中大量含有暗弱的红星,而不含有亮的蓝星。

所有这一切都表明,拥有大约三百颗星的昴星团开始形成于六亿年以前,一直持续到终于形成了B型星.这些非常亮的恒星辐射着极其丰富的紫外线,它们已把气体电离并彻底吹散,只在银河系中残留下一些气体的痕迹。随着气体的离去,恒星的形成过程也就趋于停止。琢磨一下玫瑰星云很有意思的,它的中心有一群非常亮的恒星,这团星云可能就是因发生这种从中央向外吹散气体的过程而形成的。这一设想或许能解释这种异常有趣的气体与恒星集合体的环状结构.

昴星团星云是蓝色的,这意味着它们是反射星云,反射着位于它们附近(或者之中)的明亮恒星的光线。这些星云中最明亮的部分,即围绕在昴宿五周围的星云,是1859年10月19日被(意大利)威尼斯的ErnstWilhelmLeberecht(Wilhelm)Tempel利用4英寸折射镜发现的;它被收入NGC星表中,编号为NGC1435。LeosOndra提供了一份在线的WilhelmTempel传记,以及一幅昴宿五星云的素描,经同意归入到本资料库中。星云向昴宿四延伸的部分在1875年被发现(即NGC1432),围绕着昴宿六,昴宿一,昴宿增六和昴宿二的星云在1880年被发现。完整的昴星团的复杂性,直到1885年到1888年间,巴黎的Henry兄弟和英国的IsaacRoberts发明了第一架天文照相机之后,才被揭露出来。1890年,E.E.Barnard发现星云物质有一个非常靠近昴宿五的恒星状聚集中心,它被编入IC星表,编号为IC349。1912年,VestoM.Slipher分析了昴星团星云的光谱,揭露了它们的反射星云本质,因为它们的光谱与照亮它们的恒星的光谱一模一样。更多信息可以在我们的昴星团主要恒星及其对应星云的编号列表中找到。

金牛座
金牛座
本质上来说,反射星云很可能是分子云中的尘埃部分,与昴星团无关,只是刚好穿过昴星团而已。它并不是形成星团的星云的残余部分,这可以从以下事实中看出来,星云与星团拥有不同的径向速度,它们正以每秒6.8英里,即每秒11千米的速度相互穿越。

根据来自日内瓦的一个小组发表的最新计算结果(G.Meynet,J.-C.Mermilliod,andA.MaederinAstron.Astrophys.Suppl.Ser.98,477-504,1993),昴星团的年龄为1亿年。这与早期发表的“权威”年龄大了许多,以前的年龄通常在6千到8千万年之间(例如,SkyCatalog2000给出的年龄为7千8百万年)。还有计算表明,昴星团可以以星团的形式继续存在约2亿5千万年(KennethGlynJones);此后,它们会沿着各自的轨道分散成单颗恒星(或是聚星)。

欧洲航天局的天文测量卫星Hipparcos最近直接用视差法测量了昴星团的距离;根据这些测量,昴星团距我们380光年(此前采用的数值是408光年)。新的距离数值需要对昴星团中恒星相对较暗的视星等给出解释。昴星团的Trumpler类型被定为II,3,r型(Trumpler,根据KennethGlynJones的说法)或者I,3,r,n型(G?tz和SkyCatalog2000),意味着这个星团似乎是独立的,向中心高度聚集或是中等聚集,其中恒星亮度的分布范围较大,成员星较多(超过100颗)。

昴星团中有些高速自转的恒星,表面的旋转速度为150到300千米/秒,这在光谱型为(A-B)型的主序星中是普遍现象。由于这种旋转,它们一定是(扁圆的)椭球体,而不是球体。这种旋转之所以能够被发现,是因为它会使得光谱吸收线变得更宽,更发散,因为相对于恒星的平均径向速度而言,位于恒星一侧的部分恒星表面正在接近我们,而另一侧却在远离我们。这个星团的快速自转恒星中最突出的例子是昴宿增十二(Pleione),这也是颗变星,亮度介于4.77和5.50等之间(KennethGlynJones)。O.Struve曾经预言这样的旋转会导致恒星抛出气体包层,1938年到1952年间,对昴宿增十二的光谱分析观测到了这一现象。

CeciliaPayne-Gaposhkin提到昴星团中包含着一些白矮星(WD)。这给恒星演化提出了一个特殊的问题:白矮星是怎么出现在一个如此年轻的星团中的?由于存在着不止一颗白矮星,因此可以相当肯定这些恒星原来都是星团的成员星,并不都是被捕获的场恒星(总之,捕获过程在这样一个相当松散的疏散星团中效率并不高)。[译注:场恒星,fieldstars,是指独立的,不成团的恒星。]按照恒星演化理论,白矮星的质量不可能超过大约1.4倍太阳质量的上限(钱德拉塞卡极限,theChandrasekharlimit),更大质量的白矮星会因为它们自身的重力而塌缩。但是如此低质量的恒星演化得极慢,需要几十亿年才能演化到最后阶段,昴星团短短1亿年的年龄显然是不够的。

唯一可能的解释是,这些白矮星曾经是大质量恒星,因此它们可以快速演化,但是一些原因(比如强烈的恒星风,邻近恒星的质量吸积,或者快速自转)使他们失去了大部分质量。结果,它们可能将大部分质量都抛入太空,形成了行星状星云。总之,最后剩下来的恒星(即原来的恒星核)质量一定低于钱德拉塞卡极限,这样它们才可能演化到稳定的白矮星阶段,从而被我们观测到。

1995年以来对昴星团的最新观测发现了几个异常类型恒星的候选者,或者说是类似恒星的天体,即所谓的褐矮星(Br

金牛座
金牛座
ownDwarfs)。这种迄今为止仍然只是假说的天体被认为质量介于巨行星(比如木星)和小恒星(恒星结构理论指出最小的恒星,即在其生命阶段中可以通过核聚变制造能量的天体,质量最少不得低于太阳质量的百分之6到7,即60到70倍木星质量)之间。因此褐矮星的质量应该拥为木星质量的10到60倍左右。理论上,它们可以在红外光波段被观测到,直径与木星相当或更小(143,000千米),密度是木星的10到100倍,因为强得多的引力会将它们压得更紧。

即使用肉眼,在一般的条件下,昴星团也是相当容易找到的,位于明亮的红巨星毕宿五(Aldebaran,金牛座Alpha,87号星,0.9等,光谱型K5III)西北方接近10度的位置。明显包围在毕宿五周围的,是另一个同样著名的疏散星团,毕星团(Hyades);现在知道,毕宿五并不是毕星团的成员,只是一颗前景恒星(距离我们68光年,而毕星团的距离为150光年)。

在双筒镜或者广角镜中,这个星团是个壮观的天体,在11/5度的直径范围内可以显示超过100颗的恒星。对望远镜来说,即使在最低放大率下,这个星团也大到也无法在一个视场中看到全貌。星团中拥有许多双星和聚星。昴宿五星云NGC1435需要黑暗的天空才能看见,在广角镜中观测效果最佳(Tempel是用一架4英寸望远镜发现它的)。

由于昴星团距离黄道较近(只差4度),星团被月亮掩食的现象会经常发生:这是非常吸引人的奇景,尤其对于那些只拥有廉价器材的爱好者来说(事实上,你用肉眼就可以观测它,不过即使最小的双筒镜或者望远镜都会增加观测的乐趣——1972年3月的月掩昴星团是笔者首次业余天文观测经历之一)。这样的现象可以形象地说明月亮与这个星团之间的相对大小:Burnham指出月亮可以被“塞进由”昴宿六,昴宿一,昴宿五和昴宿二“组成的四边形内”(在这种情况下,昴宿四,甚至昴宿三都会被月亮挡住)。同样,行星也会运行到昴星团附近(金星,火星和水星甚至偶尔会从其中穿过),展示出壮丽的景象。

金牛座 - 护佑宝石 [回目录]

来自于大自然的祖母绿、青金可以提升金牛座的活力与激情,增加他们对生命的内在感受,让他们内外兼修,使别人赏心悦目。

祖母绿(Emerald)(心轮)

是五月之诞生石。祖母绿象征沈着、恋爱成功、财富、快乐及心灵安详。它能帮助视觉上的问题及回复青春,且能改善记忆力及治疗失眠。祖母绿能有效帮助身体免疫系统,也是对于沉思及更深的洞察的宝石。若需要增强信心,可选择祖母绿配戴。


祖母绿

青金(LapisLazuli)(喉轮)

青金能有助于甲状腺疾病及神经痛。青金是一种极具有力量的宝石,对一些比较敏感的人会觉得力量过大,除非它用玻璃或水晶围起来。它能特别地有效治疗甲状腺疾病,并且能提高精神力量,帮助我们接触我们更高层的自我。对于要作出决定时,它是最好配戴的宝石。

金牛座 - 参考资料 [回目录]
词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。

标签: 金牛座

同义词: 金牛星座

词条统计

浏览次数 : 189 次

编辑次数 : 1 次 历史版本

更新时间 : 2009-08-02

词条创建者 : 迷迭之乡

编辑者 : 迷迭之乡

双语连环画