每日一句: Time is luck. So don't waste it living someone else's life, make yours count for something. Fight for what matters to you, no matter what. 生即幸福,所以不要浪费生命为别人而活,要活出你自己的意义,为你热爱的事物奋斗,心无旁骛。 跟读

汉语站

2014年9月2日 星期二

甲午(马)年八月初九

编辑词条 创建词条 内容来源

特征抽取(特征抽取)

特征抽取又称特征提取,是指模式识别中,对某一模式的一组测量值进行变换以突出该模式具有代表性特征的方法。是一种提取有效信息的方法。特征,通常指传感器某一通道反射率测量值。与某一模式有关的特征数目称为其“维数”。特征抽取的目的就是从噪音中分离出有用的信息以及减少数据的维数,以简化分类器中所进行的计算。

通常有3种变换算法:①子集选择,用于减少维数;②比值,即图像处理中的比值运算,用于削减或消除大气或景物光照变化所造成的亮度水准差异;③线性组合,其目的是提高分类精度,节省计算时间。

特征抽取是对输入模式的原始测量数据(信号)所进行的一组变换,以便在比原始信号维数较低的特征空间对模式进行有效的描述或分类(见统计模式识别)。特征抽取可以用一级或多级变换实现,在多级的情况下,上一级的输出就成为下一级的输入。较低维的输出信号可以是较高维输入信号的某种线性或非线性组合,也可以仅仅是输入信号的一个子集。在后一情况下,这种变换也叫作特征选择。根据识别系统的实际要求,通过特征抽取可以从原始信号中得到为产生或表示模式所必需的关键特征,例如可从景物的原始灰度图像中抽取出目标的轮廓和形状,也可以抽取那些只对分类有效的鉴别特征。通常原始信号所组成的测量空间具有很高的维数,如摄像机获取的灰度图像,其维数可以达到256×256以上。直接用它进行分类一方面计算量很大,更重要的是不同的测量条件,如摄像机位置的微小移动、照明强弱的变化等,都可能使在测量空间中表示同一模式的向量发生极大的变化。因此在很多情况下直接在测量空间中进行分类有很大的困难。在实际问题中,原始数据经常包含一些多余的或重复的信息,为了减少整个识别系统获取测量数据的费用和相应的计算工作量以及改善识别系统的性能,也有必要通过特征抽取和选择把模式变换到较低维数的特征空间中去。可以认为特征抽取是模式识别的关键步骤。设模式在测量空间中用D维向量x表示,在特征空间中用d 维向量y表示,线性特征抽取器就是把x变换为y 的d×D阶的一个矩阵A,即y=Ax。 特征抽取和选择的主要方法有:①以K.勒维展开式为基础进行的线性变换。②给定一个变换类,在规定的准则(例如某个与错分概率上界有关的准则函数)下在变换类中选择一个最优变换A。 ③从测量得到的特征集或已经经过前级变换的特征集中在某个准则下用搜索算法、或从上到下、或从下向上算法求出一个最优的或次优的子集,以达到特征选择的目的。④非线性映射方法,例如多维定标法和参数映射法。 在实现一个具体的模式识别系统时,通过特征抽取所求得的特征向量,在极大程度上决定了识别系统的性能。因此一方面要对识别对象的各个方面进行深入的分析,尽可能从物理上确定某些对识别有效的特征;另一方面要与分类器的设计结合起来,反复进行试验,借以得到满意的结果。

词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。

标签: 特征抽取

同义词: 暂无同义词

词条统计

浏览次数 : 2326 次

编辑次数 : 1 次 历史版本

更新时间 : 2014-05-25

词条创建者 : 百度百科er

编辑者 : 百度百科er

双语连环画